Titanium-doped γ-Fe₂O₃: Reduction and oxidation properties

I. AYUB, F. J. BERRY^{*}, E. CRABB

Department of Chemistry, The Open University, Walton Hall, Milton Keynes MK7 6AA, U.K. E-mail: f.j.berry@open.ac.uk

Ö. HELGASON

Science Institute, University of Iceland, Dunhagi 3, IS-107 Reykjavik, Iceland

Dedicated to Professor Philipp Gütlich on his seventieth birthday

Titanium-doped γ -Fe₂O₃ has been prepared by the calcination of a solid formed by the addition of aqueous ammonia to an aqueous solution of titanium- and iron-containing salts and boiling the precipitate under reflux. As compared to pure γ -Fe₂O₃ made by similar methods, titanium-doped γ -Fe₂O₃ showed a higher surface area and a greater stability to reduction, thermal conversion to an α -Fe₂O₃-related structure and the maintenance of a higher surface area during oxidation-reduction cycling.

© 2004 Kluwer Academic Publishers

1. Introduction

 γ -Fe₂O₃ adopts a cubic close packed cation deficient spinel-related structure. The preparation of γ -Fe₂O₃ with controlled particle size is of special interest in various scientific and technological areas including those concerning magnetic solids and pigments and this has resulted in recent attempts to prepare nanoparticle materials by hydrolysis and pyrosol methods [1], inert gas condensation [2], and microwave plasma techniques [3]. More recently iron oxides have been shown to have reduction-reoxidation properties suitable for their use as oxygen storage components in automobile exhaust catalysts [4].

We have recently reported on the structural properties of iron oxides, particularly Fe₃O₄ and α -Fe₂O₃, when doped with tetravalent cations [5, 6]. We have now turned our attention to γ -Fe₂O₃-related systems and we report here on the synthesis of small particle γ -Fe₂O₃ doped with titanium and the effect of titanium on the surface area and stability of the material when treated under oxidising and reducing conditions.

2. Experimental

Iron (II) chloride tetrahydrate and iron (III) chloride hexahydrate in a molar ratio of iron (II) to iron (III) of 1:2 were dissolved separately in distilled water. The iron (II)-containing solution was added to the iron (III)containing solution. An aqueous suspension of titanium tetrachloride was added to the iron-containing solution. Aqueous ammonia (40 cm³) was added and the resultant precipitate boiled under reflux for 3 h. The precipitate was filtered, washed with 95% ethanol, dried under an infrared lamp and calcined in air at 250°C for 12 h.

*Author to whom all correspondence should be addressed.

Pure γ -Fe₂O₃ was prepared by an identical method but without the addition of titanium tetrachloride.

X-ray powder diffraction patterns were recorded with a Siemens D5000 diffractometer in reflection mode using Cu K_{α} radiation. ^{57}Fe Mössbauer spectra were recorded with a microprocessor controlled Mössbauer spectrometer using a ca. 25 mCi ⁵⁷Co/Rh source. The instrument was calibrated using a natural iron standard. Chemical isomer shift data are referred to metallic iron. In situ ⁵⁷Fe Mössbauer spectra were recorded at elevated temperatures using a furnace described elsewhere [7]. Temperature programmed reduction profiles were recorded under a 10% hydrogen-90% nitrogen gas flow $(20 \,\mathrm{cm}^3\mathrm{min}^{-1})$ with the temperature increasing linearly with time $(5^{\circ}C \text{ min}^{-1})$ and the consumption of hydrogen monitored with a kathrometer detector. Surface area measurements were determined by nitrogen gas adsorption at 77 K by the BET method using high vacuum conditions in a conventional apparatus.

3. Results and discussion

Pure γ -Fe₂O₃ prepared by the method described here was formed with a surface area of 69 m²g⁻¹.

The X-ray powder diffraction pattern recorded from the titanium-doped γ -Fe₂O₃ which was shown by ICP analysis to contain 4.04 wt% titanium was characteristic of a single phase material. Recent EXAFS studies of similarly produced samples [8] have indicated that titanium adopts the octahedral site in the spinel-related structure. The ⁵⁷Fe Mössbauer spectrum recorded from the material (Fig. 1) showed the superposition of a broadened sextet pattern ($\delta = -0.36(2)$ mms⁻¹, $\Delta = 0.00(2)$ mms⁻¹, H = 43(2) T) and a doublet

Figure 1 Temperature programmed reduction profile recorded from titanium-doped γ -Fe₂O₃ and the ⁵⁷Fe Mössbauer spectra recorded at 298 K following each reduction peak.

Figure 2 Temperature programmed reduction profile recorded from γ -Fe₂O₃ and the ⁵⁷Fe Mössbauer spectra recorded at 298 K following each reduction peak.

 $(\delta = 0.35(2) \text{ mms}^{-1}, \Delta = 0.75(2) \text{ mms}^{-1})$ characteristic of small particle superparamagnetic iron oxide [9] on a sextet pattern ($\delta = 0.35(2) \text{ mms}^{-1}, \Delta = 0.01(2) \text{ mms}^{-1}, H = 48(1) T$). The presence of superparamagnetic particles was confirmed by the observation of only magnetic order in the sample when the spectrum was recorded at 80 K. The result is also consistent with our previous observation of superparamagnetic particles in γ -Fe₂O₃-related materials made by identical methods [8]. The observation in the ⁵⁷Fe Mossbauer spectrum of a significant amount (ca. 42%) of small particle iron oxide is consistent with the higher surface area (ca. 139 m²g⁻¹) in the titanium-doped γ -Fe₂O₃. The larger particle size of the undoped material

is also reflected by the virtual absence of the doublet corresponding to small particle superparamagnetic iron oxide in the ⁵⁷Fe Mossbauer spectrum from pure γ -Fe₂O₃ (Fig. 2).

3.1. Reduction properties

The temperature programmed reduction profile recorded from titanium-doped γ -Fe₂O₃ showed two reduction peaks (Fig. 1). The ⁵⁷Fe Mössbauer spectrum recorded *ex situ* after the first reduction peak at ca. 350°C (Fig. 1) showed the emergence of a new sextet (δ = ca. 0.7(1) mms⁻¹) accounting for ca. 30% of the total spectral area with a magnetic hyperfine field of

ca. 45(1) T. Another sextet pattern, H = ca. 48(1) T, corresponding to ca. 25% of the spectrum and a doublet amounting to ca. 10% of the total area could also be fitted. The remaining 35% of the spectral area was fitting using previously described methods [10] to a broad distribution of magnetic hyperfine fields covering the range ca. 38 to 43T with an average isomer shift of ca. 0.48 mms^{-1} . These was no facile way by which the distribution could be unequivocally related to either the sextet with large magnetic hyperfine field and isomer shift of ca. 0.3 mms⁻¹ or the sextet with isomer shift of ca. 0.7 mms⁻¹. The sextet with the larger magnetic hyperfine field (H = ca. 48 T) has an isomer shift δ -ca. 0.35 mms⁻¹ and quadrupole shift of nearly zero and is typical of Fe^{3+} ions in the tetrahedral A sites of Fe_3O_4 . The sextet with a magnetic hyperfine field of ca. 45 T has an isomer shift $\delta = 0.7(0.1) \text{ mms}^{-1}$ and is characteristic of an average charge of +2.5 for the iron ions in the octahedral B sites of Fe₃O₄ [11]. The third contribution with a wide range of magnetic hyperfine fields (ca. 40 T) observed in the spectrum recorded after the first reduction peak at ca. 350°C can be best associated with the effect of the particle size distribution [12]. The spectrum clearly shows a transition from the pure Fe^{3+} -containing γ -Fe₂O₃-related phase to the reduced variant in the form of a Fe₃O₄related structure. An identical situation applies in the spectrum recorded from the undoped sample following initial reduction (Fig. 2). The distribution of particle

sizes precludes interpretation in terms of the exact composition. The subsequent reduction of Fe₃O₄ proceeded over a large temperature range (Fig. 1) being completed at ca. 1100°C where the ⁵⁷Fe Mössbauer spectrum showed the formation of metallic iron (H = ca. 33 T) without the formation of iron-titanium oxides such as FeTiO₃. No evidence for titanium dioxide or a reduced form of titanium dioxide was observed in the X-ray powder diffraction pattern recorded following treatment in hydrogen at 1150°C. A comparison of the ⁵⁷Fe Mössbauer spectra and the temperature programmed reduction profile recorded from titaniumdoped γ -Fe₂O₃ with those recorded from pure γ -Fe₂O₃ (Fig. 2) shows that in the undoped material initial reduction to $Fe_3O_4(H = ca. 45 \text{ and } 48 T)$ is also complete at ca. 350°C. However, following further treatment at ca. 720°C pure Fe₃O₄ underwent partial reduction to FeO $(\delta = 1.05(2) \text{ mms}^{-1}, \Delta = 0.29(2) \text{ mms}^{-1}, \text{ ca. } 40\%)$ and metallic iron (H = 33(1) T, ca. 44\%). The presence of Fe³⁺ and vacancies in nonstoichiometric FeO result in complex ⁵⁷Fe Mössbauer spectra [13] and unequivocal characterisation by Mössbauer spectroscopy is difficult especially in a multiphasic sample. However the X-ray powder diffraction pattern recorded ex situ after the second reduction peak at ca. 720°C showed three peaks at ca. 37°, 42° and 61° 2θ characteristic of FeO [14] together with reflections characteristic of Fe₃O₄ and metallic iron. The results also showed that reduction to metallic iron was complete at 1150°C. Hence

Figure 3 Some ⁵⁷Fe Mössbauer spectra recorded at 298 K from titanium-doped γ -Fe₂O₃ following reduction at 350°C in flowing 10% hydrogen-90% nitrogen (Rl); reoxidation by heating in air at 400°C (1 h) (01), and successive reduction, (R2, R3) and reoxidation (02, 03) treatment.

the presence of titanium in Fe_3O_4 appears to induce the steady consumption of hydrogen over a large temperature range and without the detectable formation of FeO.

3.2. Reduction—reoxidation properties

Titanium-doped γ -Fe₂O₃ was subjected to reduction at 350°C in the 10% hydrogen -90% nitrogen mixture (R1) and reoxidation by heating at 400°C for 1 h in air (01). The cycle of reduction and reoxidation was repeated twice (R2, 02, R3 and 03). Some ⁵⁷Fe Mössbauer spectra recorded *ex situ* from the reduced and reoxidised materials are collected in Fig. 3.

The titanium-doped γ -Fe₂O₃ was initially reduced (R1) to titanium-doped Fe_3O_4 (H = 44(1) and 48(1)T) and reoxidised (01) to titanium-doped γ -Fe₂O₃ (H = 47(1) T). The subsequent two fold reductionreoxidation cycling (R2, 02, R3, 03) induced the formation of similar oxidised and reduced products. The main trend in the Mössbauer spectra was the simultaneous decrease in the intensity of the doublet and narrowing of the linewidths of the sextet patterns which indicated decreasing superparamagnetism resulting from an increase in particle size. The particle size of titaniumdoped Fe₃O₄ (R1) of ca. 19 nm formed by initial reduction of titanium-doped γ -Fe₂O₃ was larger than that of the precursor titanium-doped γ -Fe₂O₃ (ca. 12 nm). The surface area of titanium-doped Fe₃O₄ (R1) of ca. 99 m^2g^{-1} was lower than that of titanium-doped γ -Fe₂O₃ (ca. 139 m²g⁻¹). The results recorded from titanium-doped Fe₃O₄ (R1) compare well with those reported earlier for a material of composition Fe_{2.5}Ti_{0.5}O₄ [12]. Reoxidation by heating at 400°C for 1 h. in air followed by reduction and reoxidation for a further two cycles produced only small variations in particle size and surface area with the finally regenerated titaniumdoped γ -Fe₂O₃ (03) having a particle size of ca. 18 nm and surface area of ca. 67 m^2g^{-1} . Identical reductionreoxidation cycling was also performed on pure γ -Fe₂O₃ formed by similar methods. The surface area decreased from ca. $69 \text{ m}^2\text{g}^{-1}$ for γ -Fe₂O₃ to ca. $29 \text{ m}^2\text{g}^{-1}$ for Fe₃O₄ formed by initial reduction (R1). This was followed by reoxidation to γ -Fe₂O₃ (01) with slightly larger particle size (ca. 48 nm) and lower surface area (ca. 15 m^2g^{-1}). Repeating the reduction-reoxidation process over two cycles gave further small increases in particle size with the finally regenerated γ -Fe₂O₃ having a particle size of ca. 55 nm and surface area of ca. 15 m^2g^{-1} . Hence the results show that the incorporation of titanium within γ -Fe₂O₃ has a significant effect in inhibiting both particle growth and loss of surface area during reduction-reoxidation cycling within the temperature range examined.

3.3. Oxidation monitored *in situ* by ⁵⁷Fe Mössbauer spectroscopy

The ⁵⁷Fe Mössbauer spectra recorded *in situ* from titanium-doped Fe₃O₄ formed by reduction of titanium-doped γ -Fe₂O₃ and heated in an oxygen partial pressure of ca. 1 Pa are shown in Fig. 4. The ⁵⁷Fe Mössbauer

Figure 4 57 Fe Mössbauer spectra recorded *in situ* from titanium-doped Fe₃O₄ following heating in an oxygen partial pressure of ca. 1 Pa.

parameters of the principal spectra are collected in Table I. The spectrum recorded at room temperature and shown in Fig. 4a is slightly different from the second spectrum in Fig. 1 and demonstrates that only partial reduction was achieved. The spectrum was best fitted to four sextets and one doublet accounting for ca. 6% of the spectral area. One of the sextets can be attributed to the A-site in titaniumdoped Fe₃O₄ (as described above and in [11]) and another to a sextet which is characteristic of γ -Fe₂O₃. These sextets account for ca. 30% of the spectral area and are grouped together in Table I since Mössbauer spectroscopy is unable to distinguish between nonstoichiometric Fe₃O₄ and a mixture of Fe₃O₄ and γ - Fe_2O_3 [15] and the unambiguous deconvolution of the sextet with H = ca. 49 T into two discrete sextets corresponding to Fe^{3+} in γ -Fe₂O₃ and Fe³⁺ in Fe₃O₄ is therefore inappropriate. The third sextet accounting for ca. 22% of the spectral area is assigned to the B-site in Fe₃O₄ and has the expected hyperfine parameters $(\delta = ca.0.67 \text{ mms}^{-1}, 2\varepsilon = ca.0.00 \text{ mms}^{-1}, H = ca. 45$ T). Finally, the broad-lined sextet $\delta = ca. 0.55 \text{ mms}^{-1}$,

		γ -Fe ₂ O ₂ -rel.	ated sextet ^a								Low field distr	ribution					
		or Fe ₃ O ₄ -rela	ted A-sextet ^b			Fe ₃ O.	4-related B-sex	tet ^b			as a broad-line	e sextet			Doubl	et	
Temp. (°C)	δ/mms^{-1} (± 0.03)	Γ/mms^{-1} (± 0.1)	$HT(\pm 1)$	Area% (±3)	δ/mms^{-1} (± 0.03)	Δ/mms^{-1} (± 0.02)	gΓ/mms ^{−1} (±0.01)	$HT(\pm 1)$	Area% (土3)	δ/mms^{-1} (± 0.03)	Γ/mms ^{−1} (±0.1)	<i>H/</i> T (土3)	Area% (±3)	$g\delta/mms^{-1}$ (± 0.03)	$g\Delta/mms^{-1}$ (± 0.1)	Γ mms ⁻¹ (±0.1)	Area% (±3)
25 (4a)	0.31	0.5	49	30	0.67		0.5	45	22	0.55	1.8	41	42	0.33	0.7	0.9	9
25 (4e)	0.33	0.5	49	71						0.31	1.4	43	25	0.32	0.7	0.8	4
450 (4f)	-0.0	0.9	33	35						0.1	Э	23	42	0.02	0.7	0.8	23
500 (4g)	-0.02	1.1	29	39						0	2.2	17	25	-0.01	0.7	0.8	36
523 (4h)					-0.03	-0.24	0.3	28	9b	-0.04	3.9	21	59	-0.02	0.5	0.5	32
25 (4i)	0.34	0.9	49	56	0.38	-0.21	0.3	51.3	41^{b}					0.33	0.6	0.8	ю

TABLE I 57Fe Mössbauer parameters obtained from the fitting of the Mössbauer spectra in Fig. 4

The quadruptic shift was 0.02 ± 0.1 minus in an spectra. ^bParameters for the α -Fe₂O₃-related sextet which appears during heating at 523°C.

 $H = \text{ca. } 43 \ T$ is characteristic of the presence of the wide range of particle sizes which produces a broad magnetic hyperfine field distribution. The effect of the doping could not be distinguished separately in the fitting procedure.

The spectra in Fig. 4 recorded in situ at 300, 350 and 400°C (Fig. 4b, c and d) were each recorded for 6–8 h. They showed increasing overlap of the sextets with high magnetic hyperfine fields and a simultaneous change in the average isomer shift reflecting the growth of an Fe³⁺-containing phase as the temperature increased. The area of the doublet and of the broad-line sextet with smaller magnetic hyperfine field also increased and accounted for ca. 65% of the area in the spectrum recorded from the material heated at 400°C. The oxidation was confirmed by the spectrum recorded when the material was cooled to room temperature (Fig. 4e) where the average isomer shift for all components was ca. 0.33 mms^{-1} as compared to ca. 0.48 mms^{-1} in Fig. 4a and where about 70% of the spectral area in the oxidised phase could be assigned to a γ -Fe₂O₃- related phase $(2\varepsilon = ca.0.00(2) \text{ mms}^{-1}, H = ca. 49(1) T).$ The spectrum was not amenable to fitting with a sextet corresponding to the B-site.

Further heating at 450 and 500°C gave spectra (Fig. 4f and g) which showed a continuation of the trend observed in the spectra Fig. 4b-d being composed of a broadened sextet pattern together with a dominant doublet contribution. At 500°C the doublet accounted for ca. 36% of the total spectral area. The spectrum recorded during treatment at 523°C (Fig. 4h) showed a gradual collapse of the broadened sextet pattern associated with the γ -Fe₂O₃-related phase together with two further effects. Firstly, ca. 32% of the spectrum was composed of a doublet corresponding to a paramagnetic species with sharper linewidths ($\Gamma = 0.5 \text{ mms}^{-1}$) and a well defined isomer shift ($\delta = -0.02$ (2) mms⁻¹) and quadrupole splitting ($\Delta = 0.49(0.03) \text{ mms}^{-1}$). Secondly, a sextet component characteristic of an α -Fe₂O₃related phase with a magnetic hyperfine field H = ca. 28(2) T, and quadrupole shift of -0.24(0.02) mms⁻¹ and accounting for ca. 9% of the spectral area appeared. Attempts to refit the spectrum recorded at 500°C with the parameters characteristic of α -Fe₂O₃ were unsuccessful indicating that the phase transition to α -Fe₂O₃ begins at temperatures exceeding 500°C. Finally, the spectrum recorded after cooling to room temperature (Fig. 4i) confirmed the γ - to α -Fe₂O₃ phase transition with the sextet characteristic of α -Fe₂O₃ (H = ca. 51(1) T, $\Delta = -0.21(0.02) \text{ mms}^{-1}$) accounting for ca. 41% of the spectrum. The X-ray powder diffraction pattern recorded from the sample cooled to room temperature confirmed that titanium, either in the form of titanium dioxide or (less likely) FeTiO₃, had not segregated from the iron oxide during the thermal treatment.

The results contrast with those recorded from Fe₃O₄ formed by reduction of γ -Fe₂O₃ when heated in an oxygen partial pressure of ca. 1 Pa and which were similar to those reported previously [16]. The Fe₃O₄ was initially converted to γ -Fe₂O₃ at 200°C which appeared as a broad-lined spectrum. Cooling the sample to room temperature confirmed the identity of the

material as γ -Fe₂O₃ (H = 49(1) T). Heating to 300°C showed the onset of α -Fe₂O₃ formation, which is in good agreement results obtained elsewhere [1, 12]. The spectrum recorded after cooling to room temperature showed the superposition of sextets corresponding to γ -Fe₂O₃ (H = 49(1) T) and α -Fe₂O₃ (H = 52(1) T). Further heating increased the intensity of the peaks corresponding to α -Fe₂O₃ until, at 427°C, the material was completely converted to α -Fe₂O₃ (H = 52(1) T).

The apparent stabilization by titanium of the conversion of spinel-related γ -Fe₂O₃ to its corundum-related α -Fe₂O₃ polymorph was confirmed by recording X-ray powder diffraction patterns ex situ from the samples following cooling to room temperature. The results showed that the onset of conversion of titanium-doped γ -Fe₂O₃ of surface area 139 m²g⁻¹ to titanium-doped α -Fe₂O₃ occured at ca. 650°C and that conversion is complete at ca. 700°C. In contrast γ -Fe₂O₃ with a similar surface area (150 m²g⁻¹) was converted to α -Fe₂O₃ at temperatures between 400 and 450°C. The results showed that the stabilization of the spinel-related γ -Fe₂O₃ structure with respect to its thermally induced conversion to α -Fe₂O₃, is a result of the presence of titanium as opposed to the higher surface area of the γ -Fe₂O₃-related phase.

4. Conclusion

Spinel-related titanium-doped γ -Fe₂O₃ prepared by the calcination of a solid formed by the addition of aqueous ammonia to an aqueous solution of titanium- and iron-containing salts and boiling the precipitate under reflux has a higher surface area but a greater stability to reduction and thermal conversion to a corundum-related α -Fe₂O₃- related material than its undoped counterpart. Titanium-doped γ -Fe₂O₃ also maintains a higher surface area during oxidation-reduction cycling.

Acknowledgement

We thank Johnson Matthey plc for financial support.

References

- 1. E. HERRERO, M. V. CABANAS, M. VALLET-REGI, J. L. MARTINEZ and J. M. GONZALEZ-CALBET, *Solid State Ionics* **101–103** (1997) 213.
- 2. G. SCHIMANKE and M. MARTIN, *ibid*. **136–137** (2000) 1235.
- E. PELLEGRIN, M. HAGELSTEIN, S. DOYLE, H. O. MOSER, J. FUCHS, D. VOLLATH, S. SCHUPPLER, M. A. JAMES, S. S. SAXENA, L. NIESEN, O. ROGOJANN, G. A. SAWATZKY, C. FERRERO, M. BOROWSKY, O. TJERNBERG and N. B. BROOKES, *Phys. Stat Sol.* 215 (1999) 797.
- 4. J. M. FISHER, T. J. HYDE and D. THOMPSETT, UK Patent PCT/GB98/00325 (1998).
- 5. F. J. BERRY, C. GREAVES, J. G. MCMANUS, M. MORTIMER and G. OATES, J. Solid State Chem. 130 (1997) 272.
- 6. F. J. BERRY, C. GREAVES, Ö. HELGASON and J. G. MCMANUS, *J. Mater. Chem.* **9** (1999) 223.
- 7. Ö. HELGASON, H. P. GUNNLAUGSSON, K. JONSSON and S. STEINTHORSSON, *Hyperf. Inter.* **91** (1994) 595.
- Ö. HELGASON, J.-M. GRENECHE, F. J. BERRY, S. MØRUP and F. MOSSELMANS, J. Phys. Cond. Matter 13 (2001) 10785.

- F. J. BERRY, in "The Mössbauer Effect in Supported Microcrystallites," Advances in Inorganic Chemistry and Radiochemistry, Vol. 21, edited by H. J. Emeleus and A. G. Sharpe (Academic Press, New York, 1978), p. 255.
- 10. C. WIVEL and S. MØRUP, J. Phys. E 14 (1981) 605.
- 11. H. TANAKA and M. KONO, J. Geomag. Geoelectr. **39** (1987) 463.
- N. GUIGUE-MILLOT, S. BÉGIN-COLIN, Y. CHAMPION, M. J. HŸTCH, G. LE CAËR and P. PERRIAT, J. Solid State Chem. 170 (2003) 30.
- E. MURAD and J. M. JOHNSTON, in "Iron Oxides and Oxyhydroxides," Mössbauer Spectroscopy Applied to Inorganic Chemistry, Vol. 2, edited by G. J. Long (Plenum Press, New York, 1987) p. 507.

14. JCPDS Index No. 06-0615.

- G. M. DA COSTA, E. DE GRAVE, P. M. A. DE BAKKER and R. E. VANDENBERGHE, *Clays Clay Mines*. 43 (1995) 656.
- 16. F. J. BERRY, Ö. HELGASON, K. JONSSON and S. J. SKINNER, in Proceedings of The International Conference on the Applications of the Mossbauer Effect, edited by I. Ortalli (SIF, Bologna, 1996) p. 59.
- 17. P. PERRIAT, E. FRIES, N. MILLOT and B. DOMENICHINI, *Solid State Ionics* **117** (1999) 175.

Received 17 November 2003 and accepted 12 July 2004